Efficient Conditional Generation on Scale-based Visual Autoregressive Models

15 Sept 2025 (modified: 12 Nov 2025)ICLR 2026 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Computer Vision, Image Generation, Image-to-Image Generation
Abstract: Recent advances in autoregressive (AR) models have demonstrated their potential to rival diffusion models in image synthesis. However, for complex spatially- conditioned generation, current AR approaches rely on fine-tuning the pre-trained model, leading to significant training costs. In this paper, we propose the Efficient Control Model (ECM), a plug-and-play framework featuring a lightweight control module that introduces control signals via a distributed architecture. This archi- tecture consists of context-aware attention layers that refine conditional features using real-time generated tokens, and a shared gated feed-forward network (FFN) designed to maximize the utilization of its limited capacity and ensure coherent control feature learning. Furthermore, recognizing the critical role of early-stage generation in determining semantic structure, we introduce an early-centric sam- pling strategy that prioritizes learning early control sequences. This approach re- duces computational cost by lowering the number of training tokens per iteration, while a complementary temperature scheduling during inference compensates for the resulting insufficient training of late-stage tokens. Extensive experiments on scale-based AR models validate that our method achieves high-fidelity and diverse control over image generation, surpassing existing baselines while significantly improving both training and inference efficiency.
Primary Area: generative models
Submission Number: 6054
Loading