MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Scientific Figure Understanding, Multimodal Large Language Model, Large Vision Language Model, Multi-discipline, Multimodal, Scientific knowledge understanding, benchmark, Nature science, Visual instruction-following
TL;DR: We created a multi-discipline, multimodal dataset from Nature Communications journal articles, building a benchmark for evaluating comprehension of scientific content and figures and training resources for multimodal models.
Abstract: The rapid development of Multimodal Large Language Models (MLLMs) is making AI-driven scientific assistants increasingly feasible, with interpreting scientific figures being a crucial task. However, existing datasets and benchmarks focus mainly on basic charts and limited science subjects, lacking comprehensive evaluations. To address this, we curated a multimodal, multidisciplinary dataset from peer-reviewed, open-access Nature Communications articles, spanning 72 scientific disciplines. This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations (e.g., western blots), which often require graduate-level, discipline-specific expertise to interpret. We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models across varied settings. The results highlight the high difficulty of these tasks and the significant performance gap among models. While many open-source models performed at chance level on the multiple-choice task, some matched the performance of proprietary models. However, the gap was more pronounced in the captioning task. Our dataset also provide valuable resource for training. Fine-tuning the Qwen2-VL-2B model with our task-specific multimodal training data improved its multiple-choice accuracy to a level comparable to GPT-4o, though captioning remains challenging. Continuous pre-training of MLLMs using our interleaved article and figure data enhanced their material generation capabilities, demonstrating potential for integrating scientific knowledge. The dataset and benchmarks will be released to support further research.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3255
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview