A Rule-Based Approach for Interpretable Intensity-Modulated Radiation Therapy Treatment Selection

Published: 01 Jan 2024, Last Modified: 28 Jan 2025FUZZ 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Artificial Intelligence (AI) methods are becoming essential in healthcare. In the context of Intensity-Modulated Radiation Therapy (IMRT), Knowledge-Based Planning (KBP) methodologies have enabled the modification of treatments in real-time to accommodate morphological changes in patients. KBP for IMRT is a data-driven approach that utilises real-time medical imaging to adjust the radiation dose for a patient as needed for the different stages of an illness. In this work we present an interpretable AI model that selects the best IMRT treatment alternatives and determines which is the best. We use an Adaptive Neuforuzzy Adaptive Inference System (ANFIS), which combines the potential of a neural network with the interpretability of a rule based system. We train the model in a supervised manner using the OpenKBP challenge data repository. For this purpose, we also developed a data augmentation method that is supported by Diffusion Probabilistic Models. This approach enables the generation of a wider spectrum of treatment qualities and aids regularisation. The primary advantage of this framework resides in its ability to offer explanations, which is essential in the deployment of medical procedures in real life. Moreover, it serves as a valuable means to test hypotheses concerning the quality of IMRT treatments. Our study reveals that the developed tool has substantial potential to establish itself as a reference in the realm of explainable IMRT treatment selection tools.
Loading