Spectral Networks and Locally Connected Networks on GraphsDownload PDF

18 Apr 2025 (modified: 25 Dec 2013)ICLR 2014Readers: Everyone
Decision: submitted, no decision
Abstract: Convolutional Neural Networks are extremely efficient architectures in image and audio recognition tasks, thanks to their ability to exploit the local translational invariance of signal classes over their domain. In this paper we consider possible generalizations of CNNs to signals defined on more general domains without the action of a translation group. In particular, we propose two constructions, one based upon a hierarchical clustering of the domain, and another based on the spectrum of the graph Laplacian. We show through experiments that for low-dimensional graphs it is possible to learn convolutional layers with $O(1)$ parameters, resulting in efficient deep architectures.
8 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview