Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization

Published: 01 Jan 2025, Last Modified: 04 Nov 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
Loading