Improving Domain Generalization with Domain Relations

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Domain Generalization; Domain Relations; Distribution Shift
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: enhancing domain generalization through meta-data-driven domain relations
Abstract: Distribution shift presents a significant challenge in machine learning, where models often underperform during the test stage when faced with a different distribution than the one they were trained on. In this paper, we focus on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on, and propose a new approach called DG. Unlike previous approaches that aim to learn a single model that is domain invariant, DG leverages domain similarities based on domain metadata to learn domain-specific models. Concretely, DG learns a set of training-domain-specific functions during the training stage and reweights them based on domain relations during the test stage. These domain relations can be directly obtained and learned from domain metadata. Under mild assumptions, we theoretically prove that using domain relations to reweight training-domain-specific functions achieves stronger out-of-domain generalization compared to the conventional averaging approach. Empirically, we evaluate the effectiveness of DG using both toy and real-world datasets for tasks such as temperature regression, land use classification, and molecule-protein binding affinity prediction. Our results show that DG consistently outperforms state-of-the-art methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 2047
Loading