Abstract: This article tackles the problem of performing multilingual polarity classification on Twitter, comparing three techniques: (1) a multilingual model trained on a multilingual dataset, obtained by fusing existing monolingual resources, that does not need any language recognition step, (2) a dual monolingual model with perfect language detection on monolingual texts and (3) a monolingual model that acts based on the decision provided by a language identification tool. The techniques were evaluated on monolingual, synthetic multilingual and code-switching corpora of English and Spanish tweets. In the latter case we introduce the first code-switching Twitter corpus with sentiment labels. The samples are labelled according to two well-known criteria used for this purpose: the SentiStrength scale and a trinary scale (positive, neutral and negative categories). The experimental results show the robustness of the multilingual approach (1) and also that it outperforms the monolingual models on some monolingual datasets.
0 Replies
Loading