LLMs -- the Good, the Bad or the Indispensable?: A Use Case on Legal Statute Prediction and Legal Judgment Prediction on Indian Court Cases

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 FindingsEveryoneRevisionsBibTeX
Submission Type: Regular Short Paper
Submission Track: Theme Track: Large Language Models and the Future of NLP
Submission Track 2: NLP Applications
Keywords: Legal judgement prediction, Legal Statute prediction, LLMs, explainability, bias, fairness, ethics
Abstract: The Large Language Models (LLMs) have impacted many real-life tasks. To examine the efficacy of LLMs in a high-stake domain like law, we have applied state-of-the-art LLMs for two popular tasks: Statute Prediction and Judgment Prediction, on Indian Supreme Court cases. We see that while LLMs exhibit excellent predictive performance in Statute Prediction, their performance dips in Judgment Prediction when compared with many standard models. The explanations generated by LLMs (along with prediction) are of moderate to decent quality. We also see evidence of gender and religious bias in the LLM-predicted results. In addition, we present a note from a senior legal expert on the ethical concerns of deploying LLMs in these critical legal tasks.
Submission Number: 311
Loading