Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: theory, complexity theory, state space models, deep learning architectures, logic in computer science
TL;DR: We theoretically prove the shortcomings of current deep learning models with a specific focus on State Space Models.
Abstract:

Despite their successes, deep learning models struggle with tasks requiring complex reasoning and function composition. We present a theoretical and empirical investigation into the limitations of Structured State Space Models (SSMs) and Transformers in such tasks. We prove that one-layer SSMs cannot efficiently perform function composition over large domains without impractically large state sizes, and even with Chain-of-Thought prompting, they require a number of steps that scale unfavorably with the complexity of the function composition. Also, the language of a finite-precision SSM is within the class of regular languages. Our experiments corroborate these theoretical findings. Evaluating models on tasks including various function composition settings, multi-digit multiplication, dynamic programming, and Einstein's puzzle, we find significant performance degradation even with advanced prompting techniques. Models often resort to shortcuts, leading to compounding errors. These findings highlight fundamental barriers within current deep learning architectures rooted in their computational capacities. We underscore the need for innovative solutions to transcend these constraints and achieve reliable multi-step reasoning and compositional task-solving, which is critical for advancing toward general artificial intelligence.

Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2378
Loading