Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental SystemsDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 11 May 2023ACM Comput. Surv. 2023Readers: Everyone
Abstract: There is a growing consensus that solutions to complex science and engineering problems require novel methodologies that are able to integrate traditional physics-based modeling approaches with state-of-the-art machine learning (ML) techniques. This article provides a structured overview of such techniques. Application-centric objective areas for which these approaches have been applied are summarized, and then classes of methodologies used to construct physics-guided ML models and hybrid physics-ML frameworks are described. We then provide a taxonomy of these existing techniques, which uncovers knowledge gaps and potential crossovers of methods between disciplines that can serve as ideas for future research.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview