The Value Function Polytope in Reinforcement LearningDownload PDFOpen Website

Published: 01 Jan 2019, Last Modified: 16 May 2023CoRR 2019Readers: Everyone
Abstract: We establish geometric and topological properties of the space of value functions in finite state-action Markov decision processes. Our main contribution is the characterization of the nature of its shape: a general polytope (Aigner et al., 2010). To demonstrate this result, we exhibit several properties of the structural relationship between policies and value functions including the line theorem, which shows that the value functions of policies constrained on all but one state describe a line segment. Finally, we use this novel perspective to introduce visualizations to enhance the understanding of the dynamics of reinforcement learning algorithms.
0 Replies

Loading