Efficient Recognition of Subgraphs of Planar Cubic Bridgeless GraphsDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 08 May 2023ESA 2022Readers: Everyone
Abstract: It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-colorable if and only if it contains no bridge. We consider the question of which planar graphs are subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient recognition algorithm that given an n-vertex planar graph, augments this graph in 𝒪(n²) steps to a planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools involve the Generalized (Anti)factor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case.
0 Replies

Loading