EDINET-Bench: Evaluating LLMs on Complex Financial Tasks using Japanese Financial Statements

ICLR 2026 Conference Submission17035 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Financial Large language models, Financial benchmark, Accounting fraud detection, Earnings forecast
TL;DR: Evaluating LLMs on complex financial tasks
Abstract: Large Language Models (LLMs) have made remarkable progress, surpassing human performance on several benchmarks in domains such as mathematics and coding. A key driver of this progress has been the development of benchmark datasets. In contrast, the financial domain poses higher entry barriers due to its demand for specialized expertise, and benchmarks remain relatively scarce compared to those in mathematics or coding. We introduce EDINET-Bench, an open-source Japanese financial benchmark designed to evaluate LLMs on challenging tasks such as accounting fraud detection, earnings forecasting, and industry classification. EDINET-Bench is constructed from ten years of annual reports filed by Japanese companies. These tasks require models to process entire annual reports and integrate information across multiple tables and textual sections, demanding expert-level reasoning that is challenging even for human professionals. Our experiments show that even state-of-the-art LLMs struggle in this domain, performing only marginally better than logistic regression in binary classification tasks such as fraud detection and earnings forecasting. Our results show that simply providing reports to LLMs in a straightforward setting is not enough. This highlights the need for benchmark frameworks that better reflect the environments in which financial professionals operate, with richer scaffolding such as realistic simulations and task-specific reasoning support to enable more effective problem solving. We make our dataset and code publicly available to support future research.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Submission Number: 17035
Loading