Boosting Methods for Interval-censored Data with Regression and Classification

Published: 22 Jan 2025, Last Modified: 25 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Boosting, Functional gradient descent, Interval-censored data, Minimax error rate, Nonparametric classification, Nonparametric regression, Smoothing spline
Abstract: Boosting has garnered significant interest across both machine learning and statistical communities. Traditional boosting algorithms, designed for fully observed random samples, often struggle with real-world problems, particularly with interval-censored data. This type of data is common in survival analysis and time-to-event studies where exact event times are unobserved but fall within known intervals. Effective handling of such data is crucial in fields like medical research, reliability engineering, and social sciences. In this work, we introduce novel nonparametric boosting methods for regression and classification tasks with interval-censored data. Our approaches leverage censoring unbiased transformations to adjust loss functions and impute transformed responses while maintaining model accuracy. Implemented via functional gradient descent, these methods ensure scalability and adaptability. We rigorously establish their theoretical properties, including optimality and mean squared error trade-offs. Our proposed methods not only offer a robust framework for enhancing predictive accuracy in domains where interval-censored data are common but also complement existing work, expanding the applicability of existing boosting techniques. Empirical studies demonstrate robust performance across various finite-sample scenarios, highlighting the practical utility of our approaches.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8841
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview