Scaling FP8 training to trillion-token LLMs

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: quantization, fp8, llms, training, acceleration, compression
TL;DR: Training LLMs up to 2 trillion tokens, for the first time in FP8 precision
Abstract: We train, for the first time, large language models using FP8 precision on datasets up to 2 trillion tokens --- a 20-fold increase over previous limits. Through these extended training runs, we uncover critical instabilities in FP8 training that were not observable in earlier works with shorter durations. We trace these instabilities to outlier amplification by the SwiGLU activation function. Interestingly, we show, both analytically and empirically, that this amplification happens only over prolonged training periods, and link it to a SwiGLU weight alignment process. To address this newly identified issue, we introduce Smooth-SwiGLU, a novel modification that ensures stable FP8 training without altering function behavior. We also demonstrate, for the first time, FP8 quantization of both Adam optimizer moments. Combining these innovations, we successfully train a 7B parameter model using FP8 precision on 256 Intel Gaudi2 accelerators, achieving on-par results with the BF16 baseline while delivering up to a $\sim$ 34 % throughput improvement. A reference implementation is supplied in https://github.com/Anonymous1252022/Megatron-DeepSpeed
Supplementary Material: pdf
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3789
Loading