A Mean-Field Game Approach to Cloud Resource Management with Function ApproximationDownload PDF

Published: 31 Oct 2022, Last Modified: 17 Dec 2022NeurIPS 2022 AcceptReaders: Everyone
Keywords: Mean-field game, reinforcement learning, serverless computing, resource management
Abstract: Reinforcement learning (RL) has gained increasing popularity for resource management in cloud services such as serverless computing. As self-interested users compete for shared resources in a cluster, the multi-tenancy nature of serverless platforms necessitates multi-agent reinforcement learning (MARL) solutions, which often suffer from severe scalability issues. In this paper, we propose a mean-field game (MFG) approach to cloud resource management that is scalable to a large number of users and applications and incorporates function approximation to deal with the large state-action spaces in real-world serverless platforms. Specifically, we present an online natural actor-critic algorithm for learning in MFGs compatible with various forms of function approximation. We theoretically establish its finite-time convergence to the regularized Nash equilibrium under linear function approximation and softmax parameterization. We further implement our algorithm using both linear and neural-network function approximations, and evaluate our solution on an open-source serverless platform, OpenWhisk, with real-world workloads from production traces. Experimental results demonstrate that our approach is scalable to a large number of users and significantly outperforms various baselines in terms of function latency and resource utilization efficiency.
TL;DR: We present a mean-field game (MFG) approach to cloud resource management and propose a natural actor-critic learning algorithm for MFGs with function approximation
Supplementary Material: pdf
17 Replies

Loading