Keywords: AI agent, benchmark assessment
Abstract: Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues in task setup or reward design. For example, SWE-bench-Verified uses insufficient test cases, while $\tau$-bench counts empty responses as successes. Such issues can lead to under- or overestimation of agents’ performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces performance overestimation by 33%.
Croissant File: json
Code URL: https://github.com/uiuc-kang-lab/agentic-benchmarks/tree/main
Primary Area: Evaluation (e.g., data collection methodology, data processing methodology, data analysis methodology, meta studies on data sources, extracting signals from data, replicability of data collection and data analysis and validity of metrics, validity of data collection experiments, human-in-the-loop for data collection, human-in-the-loop for data evaluation)
Submission Number: 419
Loading