Keywords: large language models, alignment, safety
Abstract: Alignment of large language models (LLM) is a process that ensures the model’s responses to user prompts align with human intentions and social values. This optimization typically relies on pre-collected prompts. The collection of these prompts often either requires careful human interventions or proves to be difficult to have a good coverage over all scenarios an LLM can improve over . To address this issue, we propose an alignment method based on a two-agent game, consisting of an adversarial agent and a defensive agent. The adversarial agent’s task is to generate prompts that expose the deficiencies of the defensive agent. At the same time, the defensive agent improves its performance on the prompts generated by the adversary based on feedback from the reward model. This iterative process is repeated to enhance the model’s performance. We theoretically demonstrate that, under mild assumptions, this iterative alignment process converges to a Nash equilibrium by both agents. Learning in this competitive environment results in policies with better generalization capabilities. We demonstrate the advantage of our framework using extensive experiments.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9183
Loading