Keywords: RLHF, Personalization
TL;DR: We present an extension of the RLHF framework for LLM personalization
Abstract: Modern large language models (LLMs) are optimized for human-aligned responses using Reinforcement Learning from Human Feedback (RLHF). However, existing RLHF approaches assume a universal preference model and fail to account for individual user preferences, limiting their effectiveness in personalized applications. We introduce a framework that extends RLHF to enable user personalization by leveraging the assumption that user preferences lie in a low-dimensional space. Instead of training a separate model per user, we represent user-specific rewards as a linear combination of base reward functions. Using only 10 user responses, our method can infer user-specific rewards and align LLM outputs accordingly. We validate our approach through experiments with both synthetic and real users, demonstrating significant personalization achieved by our method. In human evaluations, our method achieves a 67% win rate over default GPT-4o responses.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 518
Loading