VBH-GNN: Variational Bayesian Heterogeneous Graph Neural Networks for Cross-subject Emotion Recognition

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: EEG, Emotion Recognition, Multi-modal, Domain Adaptation, Cross-subject
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The research on human emotion under electroencephalogram (EEG) is an emerging field in which cross-subject emotion recognition (ER) is a promising but challenging task. Many approaches attempt to find emotionally relevant domain-invariant features using domain adaptation (DA) to improve the accuracy of cross-subject ER. However, two problems still exist with these methods. First, only single-modal data (EEG) is utilized, ignoring the complementarity between multi-modal physiological signals. Second, these methods aim to completely match the signal features between different domains, which is difficult due to the extreme individual differences of EEG. To solve these problems, we introduce the complementarity of multi-modal physiological signals and propose a new method for cross-subject ER that does not align the distribution of signal features but rather the distribution of spatio-temporal relationships between features. We design a Variational Bayesian Heterogeneous Graph Neural Network (VBH-GNN) with Relationship Distribution Adaptation (RDA). The RDA first aligns the domains by expressing the model space as a posterior distribution of a heterogeneous graph for a given source domain. Then, the RDA transforms the heterogeneous graph into an emotion-specific graph to further align the domains for the downstream ER task. Extensive experiments on two public datasets, DEAP and Dreamer, show that our VBH-GNN outperforms state-of-the-art methods in cross-subject scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 6021
Loading