Abstract: Sampling-based motion planning works well in many cases but is less effective if the configuration space has narrow passages. In this paper, we propose a learning-based strategy to sample in these narrow passages, which improves overall planning time. Our algorithm first learns from the configuration space planning graphs and then uses the learned information to effectively generate narrow passage samples. We perform experiments in various 6D and 7D scenes. The algorithm offers one order of magnitude speed-up compared to baseline planners in some of these scenes.
Loading