Abstract: Large Language Models (LLMs) are often used as automated judges to evaluate text, but their effectiveness can be hindered by various unintentional biases. We propose using linear classifying probes, trained by leveraging differences between contrasting pairs of prompts, to directly access LLMs' latent knowledge and extract more accurate preferences. Through extensive experiments using models of varying size from four different families and six diverse datasets assessing text quality evaluation and common sense reasoning, we demonstrate that both supervised and unsupervised probing approaches consistently outperform traditional generation-based judgement while maintaining similar computational costs. These probes generalise under domain shifts and can even outperform finetuned evaluators with the same training data size. Our results suggest linear probing offers an accurate, robust and computationally efficient approach for LLM-as-judge tasks while providing interpretable insights into how models encode judgement-relevant knowledge. Our data and code will be openly released in the future.
Paper Type: Long
Research Area: Interpretability and Analysis of Models for NLP
Research Area Keywords: probing, knowledge tracing/discovering/inducing, calibration/uncertainty
Contribution Types: Model analysis & interpretability, Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 4953
Loading