Rethinking Graph Neural Networks for Anomaly DetectionDownload PDF

18 Jan 2023OpenReview Archive Direct UploadReaders: Everyone
Abstract: Graph Neural Networks (GNNs) are widely applied for graph anomaly detection. As one of the key components for GNN design is to select a tailored spectral filter, we take the first step towards analyzing anomalies via the lens of the graph spectrum. Our crucial observation is the existence of anomalies will lead to the `right-shift' phenomenon, that is, the spectral energy distribution concentrates less on low frequencies and more on high frequencies. This fact motivates us to propose the Beta Wavelet Graph Neural Network (BWGNN). Indeed, BWGNN has spectral and spatial localized band-pass filters to better handle the `right-shift' phenomenon in anomalies. We demonstrate the effectiveness of BWGNN on four large-scale anomaly detection datasets.
0 Replies

Loading