HiAER-Spike: Hardware-Software Co-Design for Large-Scale Reconfigurable Event-Driven Neuromorphic Computing

Published: 01 Jan 2024, Last Modified: 15 May 2025ICRC 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In this work, we present HiAER-Spike, a modular, reconfigurable, event-driven neuromorphic computing platform designed to execute large spiking neural networks with up to 160 million neurons and 40 billion synapses - roughly twice the neurons of a mouse brain at faster-than real-time. This system, which is currently under construction at the UC San Diego Supercomputing Center, comprises a co-designed hard-and software stack that is optimized for run-time massively parallel processing and hierarchical address-event routing (HiAER) of spikes while promoting memory-efficient network storage and execution. Our architecture efficiently handles both sparse connectivity and sparse activity for robust and low-latency event-driven inference for both edge and cloud computing. A Python programming interface to HiAER-Spike, agnostic to hardware-level detail, shields the user from complexity in the configuration and execution of general spiking neural networks with virtually no constraints in topology. The system is made easily available over a web portal for use by the wider community. In the following we provide an overview of the hard- and software stack, explain the underlying design principles, demonstrate some of the system’s capabilities and solicit feedback from the broader neuromorphic community.
Loading