On Mitigating Performance Disparities in Multilingual Speech Recognition

Published: 2024, Last Modified: 08 Jan 2026EMNLP 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: How far have we come in mitigating performance disparities across genders in multilingual speech recognition? We compare the impact on gender disparity of different fine-tuning algorithms for automated speech recognition across model sizes, languages and gender. We look at both performance-focused and fairness-promoting algorithms. Across languages, we see slightly better performance for female speakers for larger models regardless of the fine-tuning algorithm. The best trade-off between performance and parity is found using adapter fusion. Fairness-promoting fine-tuning algorithms (Group-DRO and Spectral Decoupling) hurt performance compared to adapter fusion with only slightly better performance parity. LoRA increases disparities slightly. Fairness-mitigating fine-tuning techniques led to slightly higher variance in performance across languages, with the exception of adapter fusion.
Loading