ReGen: Generative Robot Simulation via Inverse Design

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: generative simulation, robot, autonomous driving, large language model, inverse design
TL;DR: ReGen generates simulations from behavior by inferring plausible simulated environment where the behavior could have occurred through inverse design.
Abstract:

Simulation plays a key role in scaling robot learning and validating policies, but constructing simulations remains labor-intensive. In this paper, we introduce ReGen, a generative simulation framework that automates this process using inverse design. Given an agent's behavior (such as a motion trajectory or objective function) and its textual description, we infer the underlying scenarios and environments that could have caused the behavior. Our approach leverages large language models to construct and expand a graph that captures cause-and-effect relationships and relevant entities with properties in the environment, which is then processed to configure a robot simulation environment. Our approach supports (i) augmenting simulations based on ego-agent behaviors, (ii) controllable, counterfactual scenario generation, (iii) reasoning about agent cognition and mental states, and (iv) reasoning with distinct sensing modalities, such as braking due to faulty GPS signals. We demonstrate our method in autonomous driving and robot manipulation tasks, generating more diverse, complex simulated environments compared to existing simulations with high success rates, and enabling controllable generation for corner cases. This approach enhances the validation of robot policies and supports data or simulation augmentation, advancing scalable robot learning for improved generalization and robustness.

Primary Area: applications to robotics, autonomy, planning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11673
Loading