Teaching via Best-Case Counterexamples in the Learning-with-Equivalence-Queries ParadigmDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: teaching dimension, learning-with-equivalence-queries, best-case teacher, query complexity
TL;DR: We study the sample complexity of teaching, termed as "teaching dimension" in the literature, for the learning-with-equivalence-queries paradigm.
Abstract: We study the sample complexity of teaching, termed as "teaching dimension" (TD) in the literature, for the learning-with-equivalence-queries (LwEQ) paradigm. More concretely, we consider a learner who asks equivalence queries (i.e., "is the queried hypothesis the target hypothesis?"), and a teacher responds either "yes" or "no" along with a counterexample to the queried hypothesis. This learning paradigm has been extensively studied when the learner receives worst-case or random counterexamples; in this paper, we consider the optimal teacher who picks best-case counterexamples to teach the target hypothesis within a hypothesis class. For this optimal teacher, we introduce LwEQ-TD, a notion of TD capturing the teaching complexity (i.e., the number of queries made) in this paradigm. We show that a significant reduction in queries can be achieved with best-case counterexamples, in contrast to worst-case or random counterexamples, for different hypothesis classes. Furthermore, we establish new connections of LwEQ-TD to the well-studied notions of TD in the learning-from-samples paradigm.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
13 Replies

Loading