Meta-VBO: Utilizing Prior Tasks in Optimizing Risk Measures with Gaussian Processes

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: meta-learning, Bayesian optimization, risk measure, value-at-risk, conditional value-at-risk
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: Research on optimizing the risk measure of a blackbox function using Gaussian processes, especially Bayesian optimization (BO) of risk measures, has become increasingly important due to the inevitable presence of uncontrollable variables in real-world applications. Nevertheless, existing works on BO of risk measures start the optimization from scratch for every new task without considering the results of prior tasks. In contrast, its vanilla BO counterpart has received a thorough investigation on utilizing prior tasks to speed up the current task through the body of works on meta-BO which, however, have not considered risk measures. To bridge this gap, this paper presents the first algorithm for meta-BO of risk measures (i.e., value-at-risk (VaR) and the conditional VaR), namely meta-VBO, by introducing a novel adjustment to the upper confidence bound acquisition function. Our proposed algorithm exhibits two desirable properties: (i) invariance to scaling and vertical shifting of the blackbox function and (ii) robustness to prior harmful tasks. We provide a theoretical performance guarantee for our algorithm and empirically demonstrate its performance using several synthetic function benchmarks and real-world objective functions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 8829