Powerful as they are, graph neural networks (GNNs) are known to be vulnerable to distribution shifts. Recently, test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain, without re-accessing the source domain. However, existing TTA algorithms are primarily designed for attribute shifts in vision tasks, where samples are independent. These methods perform poorly on graph data that experience structure shifts, where node connectivity differs between source and target graphs. We attribute this performance gap to the distinct impact of node attribute shifts versus graph structure shifts: the latter significantly degrades the quality of node representations and blurs the boundaries between different node categories. To address structure shifts in graphs, we propose Matcha, an innovative framework designed for effective and efficient adaptation to structure shifts by adjusting the htop-aggregation parameters in GNNs. To enhance the representation quality, we design a prediction-informed clustering loss to encourage the formation of distinct clusters for different node categories. Additionally, Matcha seamlessly integrates with existing TTA algorithms, allowing it to handle attribute shifts effectively while improving overall performance under combined structure and attribute shifts. We validate the effectiveness of Matcha on both synthetic and real-world datasets, demonstrating its robustness across various combinations of structure and attribute shifts. Our code is available at https://github.com/baowenxuan/Matcha.
Keywords: test-time adaptation, distribution shifts, structure shifts, graph neural networks
TL;DR: We propose AdaRC, an innovative framework designed for effective and efficient adaptation to structure shifts by adjusting the hop-aggregation parameters in GNNs.
Abstract:
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5006
Loading