Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Weight initialization, Signal propagation, Physics informed neural networks
Abstract: As a neural network's depth increases, it can improve generalization performance. However, training deep networks is challenging due to gradient and signal propagation issues. To address these challenges, extensive theoretical research and various methods have been introduced. Despite these advances, effective weight initialization methods for tanh neural networks remain insufficiently investigated. This paper presents a novel weight initialization method for neural networks with tanh activation function. Based on an analysis of the fixed points of the function $\tanh(ax)$, the proposed method aims to determine values of $a$ that mitigate activation saturation. A series of experiments on various classification datasets and physics-informed neural networks demonstrates that the proposed method outperforms Xavier initialization methods (with or without normalization) in terms of robustness across different network sizes, data efficiency, and convergence speed. Code is available at https://github.com/1HyunwooLee/Tanh-Init.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13420
Loading