Breaking the Pre-Planning Barrier: Real-Time Adaptive Coordination of Mission and Charging UAVs Using Graph Reinforcement Learning
Abstract: Unmanned Aerial Vehicles (UAVs) are pivotal in applications such as search and rescue and environmental monitoring, excelling in intelligent perception tasks. However, their limited battery capacity hinders long-duration and long-distance missions. Charging UAVs (CUAVs) offers a potential solution by recharging mission UAVs (MUAVs), but existing methods rely on impractical pre-planned routes, failing to enable organic cooperation and limiting mission efficiency. We introduce a novel multi-agent deep reinforcement learning model named \textbf{H}eterogeneous \textbf{G}raph \textbf{A}ttention \textbf{M}ulti-agent Deep Deterministic Policy Gradient (HGAM), designed to dynamically coordinate MUAVs and CUAVs. This approach maximizes data collection, geographical fairness, and energy efficiency by allowing UAVs to adapt their routes in real-time to current task demands and environmental conditions without pre-planning. Our model uses heterogeneous graph attention networks (GATs) to present heterogeneous agents and facilitate efficient information exchange. It operates within an actor-critic framework. Simulation results show that our model significantly improves cooperation among heterogeneous UAVs, outperforming existing methods in several metrics, including data collection rate and charging efficiency.
Loading