Keywords: direct preference optimization, online DPO, tabular softmax policy
TL;DR: We study convergence rates of (online) DPO from optimization perspective, and show the impact of samplers through a theoretical separation and empirical experiments.
Abstract: Direct Preference Optimization (DPO) has emerged as a stable, scalable, and efficient solution for language model alignment.
Despite its empirical success, the optimization properties, particularly the impact of samplers on its convergence rates, remain under-explored. In this paper, we provide a rigorous analysis of DPO's convergence rates with different sampling strategies under the exact gradient setting, revealing a surprising separation: uniform sampling achieves $\textbf{linear}$ convergence, while our proposed online sampler achieves $\textbf{quadratic}$ convergence. We further adapt the sampler to practical settings by incorporating posterior distributions and logit mixing, demonstrating improvements over previous methods. For example, it outperforms vanilla DPO by over $7.4$% on Safe-RLHF dataset. Our results not only offer insights into the theoretical understanding of DPO but also pave the way for further algorithm designs.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1735
Loading