Research Area: LMs and embodiment, LMs on diverse modalities and novel applications
Keywords: Environment Generation, Large Language Models, Embodied AI, Reinforcement Learning, Game Environments, Adaptive Generation, Skill Learning, Efficiency
TL;DR: We propose EnvGen, an effective and efficient framework in which an LLM progressively generates and adapts training environments based on feedback from the RL agent's intermediate successes/failures.
Abstract: Recent state-of-the-art approaches for embodied learning via interaction directly employ large language models (LLMs) as agents to determine the next steps in an environment. Due to their world knowledge and reasoning capabilities, LLM agents achieve stronger performance than previous smaller agents based on reinforcement learning (RL); however, frequently calling LLMs is slow and expensive. This begs an interesting question: Instead of directly employing LLMs as embodied agents, can we use LLMs’ reasoning capabilities to adaptively create training environments to help smaller embodied RL agents learn useful skills that they are weak at? In this work, we propose EnvGen, a novel framework to address this question. First, we prompt an LLM to generate training environments that allow agents to quickly learn different tasks in parallel. Concretely, the LLM is given the task description and environment simulator objectives that the agents should learn and is then asked to generate a set of environment configurations (e.g., different terrains, items initially given to agents, chances of finding certain objects, etc.). Next, we train a small RL agent in a mixture of the original and LLM-generated environments. Then, we enable the LLM to continuously adapt the generated environments to progressively improve the skills that the agent is weak at, by providing feedback to the LLM in the form of the agent’s performance. We demonstrate the usefulness of EnvGen with comprehensive experiments in Crafter and Heist game environments. We find that a small RL agent trained with EnvGen can outperform SOTA methods, including a GPT-4 agent, and learns long-horizon tasks significantly faster. We also show that using an LLM to adapt environments dynamically outperforms curriculum learning approaches and how the LLM adapts training environments to help improve RL agents’ weaker skills over time. Additionally, EnvGen is substantially more efficient as it only uses a small number of LLM calls (e.g., 4 in total), whereas LLM agents require one or more LLM calls per step (resulting in thousands of LLM calls per episode). We also present detailed analyses of EnvGen’s design choices.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Submission Number: 457
Loading