Keywords: Generative models, Solver, Sampler, FlowMatching
TL;DR: A differentiable solver search method to find optimal solver parameters as much as, and use it to explore the upper performance of the pre-trained diffusion model under limited steps
Abstract: Diffusion-based models have demonstrated remarkable generation quality but at the cost of numerous function evaluations. Recently, advanced ODE-based solvers have been developed to mitigate the substantial computational demands of reverse-diffusion solving under limited sampling steps. However, these solvers, heavily inspired by Adams-like multistep methods, rely solely on t-related Lagrange interpolation. We show that t-related Lagrange interpolation is suboptimal and reveals a compact search space comprised of timestep and solver coefficients. Building on our analysis, we propose a novel differentiable solver search algorithm to identify the optimal solver. Equipped with the searched solver, our rectified flow models, SiT-XL/2 and FlowDCN-XL/2, achieve FID scores of 2.40 and 2.35, respectively, on ImageNet-$256\times256$ with only 10 steps. Meanwhile, our DDPM model, DiT-XL/2, reaches a FID score of 2.33 with only 10 steps. Notably, our searched solver outperforms traditional solvers by a significant margin. Moreover, our searched solver demonstrates its generality across various model architectures, resolutions, and model sizes.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1106
Loading