ClusterFix: A Cluster-Based Debiasing Approach without Protected-Group Supervision

Published: 01 Jan 2024, Last Modified: 29 Jan 2025WACV 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The failures of Deep Networks can sometimes be ascribed to biases in the data or algorithmic choices. Existing debiasing approaches exploit prior knowledge to avoid unintended solutions; we acknowledge that, in real-world settings, it could be unfeasible to gather enough prior information to characterize the bias, or it could even raise ethical considerations. We hence propose a novel debiasing approach, termed ClusterFix, which does not require any external hint about the nature of biases. Such an approach alters the standard empirical risk minimization and introduces a per-example weight, encoding how critical and far from the majority an example is. Notably, the weights consider how difficult it is for the model to infer the correct pseudo-label, which is obtained in a self-supervised manner by dividing examples into multiple clusters. Extensive experiments show that the misclassification error incurred in identifying the correct cluster allows for identifying examples prone to bias-related issues. As a result, our approach outperforms existing methods on standard benchmarks for bias removal and fairness.
Loading