Bayesian Low-rank Adaptation for Large Language Models

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Large language models, Bayesian deep learning, Laplace approximation, uncertainty calibration
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Parameter-efficient fine-tuning (PEFT) has emerged as a new paradigm for cost-efficient fine-tuning of large language models (LLMs), with low-rank adaptation (LoRA) being a widely adopted choice. However, fine-tuned LLMs often become overconfident especially when fine-tuned on small datasets. Bayesian methods, with their inherent ability to estimate uncertainty, serve as potent tools to mitigate overconfidence and enhance calibration. In this work, we introduce Laplace-LoRA, a straightforward yet effective Bayesian method, which applies the Laplace approximation to the LoRA parameters and, considerably boosts the calibration of fine-tuned LLMs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Submission Number: 1386
Loading