Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methodsDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 15 May 2023PLoS Comput. Biol. 2022Readers: Everyone
Abstract: Author summary Reconstructing the correlated reactions that govern a system of biochemical species from observational temporal data is an essential step in understanding many biological systems. To facilitate this process, we propose a robust, data-driven approach based on a sparse Bayesian statistical model. Our approach exploits sparse Bayesian priors and an unbiased observational model to recover a parsimonious, interpretable reaction system from mass-action relations, utilizing very little user input. On a set of simulated test problems, the method demonstrates increased robustness and decreased bias at different levels of measurement variability, while also producing interpretable reaction systems and quantifying uncertainty. As a tool, the approach can be used to flexibly interrogate biological systems while allowing incorporation of potentially uncertain domain knowledge to improve the efficiency and identifiability of the problem.
0 Replies

Loading