ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate

Published: 16 Jan 2024, Last Modified: 14 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Large Language Model, Multi-Agent Debate, LLM evaluators
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We introduce ChatEval, a multi-agent debate framework for text evaluation. It outperforms traditional methods, aligning more closely with human assessment.
Abstract: Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies. In this paper, we construct a multi-agent referee team called $\textbf{ChatEval}$ to autonomously discuss and evaluate the quality of different texts. Our experiments on two benchmarks illustrate that ChatEval delivers superior accuracy and correlation in alignment with human assessment. Furthermore, we find that the diverse role prompts (different personas) are essential in the multi-agent debate process; that is, utilizing the same role description in the prompts can lead to a degradation in performance. Our qualitative analysis also shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 1367
Loading