Abstract: We analyze the performance of the Borda counting algorithm in a non-parametric model. The algorithm needs to utilize probabilistic rankings of the items within <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$m$</tex-math></inline-formula> -sized subsets to accurately determine which items are the overall top- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> items in a total of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$n$</tex-math></inline-formula> items. The Borda counting algorithm simply counts the cumulative scores for each item from these partial ranking observations. This generalizes a previous work of a similar nature by Shah <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> using probabilistic pairwise comparison data. The performance of the Borda counting algorithm critically depends on the associated score separation <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Delta _{k}$</tex-math></inline-formula> between the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> -th item and the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(k+1)$</tex-math></inline-formula> -th item. Specifically, we show that if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Delta _{k}$</tex-math></inline-formula> is greater than certain value, then the top- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> items selected by the algorithm is asymptotically accurate almost surely; if <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Delta _{k}$</tex-math></inline-formula> is below certain value, then the result will be inaccurate with a constant probability. In the special case of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$m=2$</tex-math></inline-formula> , i.e., pairwise comparison, the resultant bound is tighter than that given by Shah <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">et al.</i> , leading to a reduced gap between the error probability upper and lower bounds. These results are further extended to the approximate top- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$k$</tex-math></inline-formula> selection setting. Numerical experiments demonstrate the effectiveness and accuracy of the Borda counting algorithm, compared with the spectral MLE-based algorithm, particularly when the data does not necessarily follow an assumed parametric model.
0 Replies
Loading