Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible InputsDownload PDFOpen Website

Published: 01 Jan 2013, Last Modified: 12 May 2023PLoS Comput. Biol. 2013Readers: Everyone
Abstract: Author Summary Sensory neurons are capable of representing a wide array of computations on sensory stimuli. Such complex computations are thought to arise in large part from the accumulation of relatively simple nonlinear operations across the sensory processing hierarchies. However, models of sensory processing typically rely on mathematical approximations of the overall relationship between stimulus and response, such as linear or quadratic expansions, which can overlook critical elements of sensory computation and miss opportunities to reveal how the underlying inputs contribute to a neuron's response. Here we present a physiologically inspired nonlinear modeling framework, the ‘Nonlinear Input Model’ (NIM), which instead assumes that neuronal computation can be approximated as a sum of excitatory and suppressive ‘neuronal inputs’. We show that this structure is successful at explaining neuronal responses in a variety of sensory areas. Furthermore, model fitting can be guided by prior knowledge about the inputs to a given neuron, and its results can often suggest specific physiological predictions. We illustrate the advantages of the proposed model and demonstrate specific parameter estimation procedures using a range of example sensory neurons in both the visual and auditory systems.
0 Replies

Loading