On the Geometry and Optimization of Polynomial Convolutional Networks
TL;DR: We theoretically analyze function spaces of polynomial convolutional networks, discussing parametrization, geometry, and optimization.
Abstract: We study convolutional neural networks with monomial activation functions. Specifically, we prove that their parameterization map is regular and is an isomorphism almost everywhere, up to rescaling the filters. By leveraging on tools from algebraic geometry, we explore the geometric properties of the image in function space of this map -- typically referred to as neuromanifold. In particular, we compute the dimension and the degree of the neuromanifold, which measure the expressivity of the model, and describe its singularities. Moreover, for a generic large dataset, we derive an explicit formula that quantifies the number of critical points arising in the optimization of a regression loss.
Submission Number: 205
Loading