On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters

Published: 16 Jan 2024, Last Modified: 28 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: WL test, graph neural networks, graph motif parameters, subgraph counting
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We provide a characterization of the expressive power of the WL test in terms of graph motif parameters
Abstract: Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the $k$-dimensional Weisfeiler-Leman ($k$WL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the $k$WL test. A central focus of research in this field revolves around determining the least dimensionality $k$, for which $k$WL can discern graphs with different number of occurrences of a pattern graph $p$. We refer to such a least $k$ as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern $p$. Particularly noteworthy is our resolution of a problem left open in previous work concerning induced copies. We additionally demonstrate that in cases where the $k$WL test distinguishes between graphs with varying occurrences of a pattern $p$, the exact number of occurrences of $p$ can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern $p$, answering an open question from previous work. We additionally show how to utilize deep results from the field of graph motif parameters, together with our characterization, to determine the WL-dimension of induced subgraph counting and counting $k$-graphlets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 5487
Loading