MolGene-E: Inverse Molecular Design to Modulate Single Cell Transcriptomics

24 Sept 2024 (modified: 25 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Systems Pharmacology, Drug Discovery, Phenotypic Screening, Generative AI, CLIP
Abstract: Designing drugs that can restore a diseased cell to its healthy state is an emerging approach in systems pharmacology to address medical needs that conventional target-based drug discovery paradigms have failed to meet. Single-cell transcriptomics can comprehensively map the differences between diseased and healthy cellular states, making it a valuable technique for systems pharmacology. However, single-cell omics data is noisy, heterogeneous, scarce, and high-dimensional. As a result, no machine learning methods currently exist to use single-cell omics data to design new drug molecules. We have developed a new deep generative framework named MolGene-E that can tackle this challenge. MolGene-E combines two novel models: 1) a cross-modal model that can harmonize and denoise chemical-perturbed bulk and single-cell transcriptomics data, and 2) a contrastive learning-based generative model that can generate new molecules based on the transcriptomics data. MolGene-E consistently outperforms baseline methods in generating high-quality, hit-like molecules from gene expression profiles obtained from single-cell datasets and gene expressions induced by knocking out targets using CRISPR. This superior performance is demonstrated across diverse de novo molecule generation metrics, which makes MolGene-E a potentially powerful new tool for drug discovery.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3879
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview