Keywords: Density Functional Theory, DFT, Functional, Exchange Correlation, XC, Equivariance, Graph Neural Network, Electron Density, Kohn-Sham DFT
TL;DR: We propose an equivariant graph neural network-driven exchange correlation functional for Kohn-Sham DFT.
Abstract: The accuracy of density functional theory hinges on the approximation of non-local contributions to the exchange-correlation (XC) functional. To date, machine-learned and human-designed approximations suffer from insufficient accuracy, limited scalability, or dependence on costly reference data. To address these issues, we introduce Equivariant Graph Exchange Correlation (EG-XC), a novel non-local XC functional based on equivariant graph neural networks (GNNs). Where previous works relied on semi-local functionals or fixed-size descriptors of the density, we compress the electron density into an SO(3)-equivariant nuclei-centered point cloud for efficient non-local atomic-range interactions. By applying an equivariant GNN on this point cloud, we capture molecular-range interactions in a scalable and accurate manner. To train EG-XC, we differentiate through a self-consistent field solver requiring only energy targets. In our empirical evaluation, we find EG-XC to accurately reconstruct `gold-standard' CCSD(T) energies on MD17. On out-of-distribution conformations of 3BPA, EG-XC reduces the relative MAE by 35% to 50%. Remarkably, EG-XC excels in data efficiency and molecular size extrapolation on QM9, matching force fields trained on 5 times more and larger molecules. On identical training sets, EG-XC yields on average 51% lower MAEs.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6847
Loading