Recommender Transformers with Behavior Pathways

Published: 23 Jan 2024, Last Modified: 23 May 2024TheWebConf24EveryoneRevisionsBibTeX
Keywords: Recommendation, Deep Learning, Sequential Recommendation
Abstract: Sequential recommendation requires the recommender to capture the evolving behavior characteristics from logged user behavior data for accurate recommendations. Nevertheless, user behavior sequences are viewed as a script with multiple ongoing threads intertwined. We find that only a small set of pivotal behaviors can be evolved into the user's future action. As a result, the future behavior of the user is hard to predict. We conclude this characteristic for sequential behaviors of each user as the behavior pathway. Different users have their unique behavior pathways. Among existing sequential models, transformers have shown great capacity in capturing global-dependent characteristics. However, these models mainly provide a dense distribution over all previous behaviors using the self-attention mechanism, making the final predictions overwhelmed by the trivial behaviors not adjusted to each user. In this paper, we build the Recommender Transformer (RETR) with a novel Pathway Attention mechanism. RETR can dynamically plan the behavior pathway specified for each user, and sparingly activate the network through this behavior pathway to effectively capture evolving patterns useful for recommendation. The key design is a learned binary route to prevent the behavior pathway from being overwhelmed by trivial behaviors. Pathway attention is model-agnostic and can be applied to a series of transformer-based models for sequential recommendation. We empirically evaluate RETR on seven intra-domain benchmarks and RETR yields state-of-the-art performance. On another five cross-domain benchmarks, RETR can capture more domain-invariant representations for sequential recommendation.
Track: User Modeling and Recommendation
Submission Guidelines Scope: Yes
Submission Guidelines Blind: Yes
Submission Guidelines Format: Yes
Submission Guidelines Limit: Yes
Submission Guidelines Authorship: Yes
Student Author: Yes
Submission Number: 1273
Loading