GIFT: Unlocking Full Potential of Labels in Distilled Dataset at Near-zero Cost

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Dataset Distillation, Soft Label
TL;DR: We propose an effective plug-and-play approach to consistently enhances the SOTA dataset distillation methods without incurring additional computational costs.
Abstract: Recent advancements in dataset distillation have demonstrated the significant benefits of employing soft labels generated by pre-trained teacher models. In this paper, we introduce a novel perspective by emphasizing the full utilization of labels. We first conduct a comprehensive comparison of various loss functions for soft label utilization in dataset distillation, revealing that the model trained on the synthetic dataset exhibits high sensitivity to the choice of loss function for soft label utilization. This finding highlights the necessity of a universal loss function for training models on synthetic datasets. Building on these insights, we introduce an extremely simple yet surprisingly effective plug-and-play approach, GIFT, which encompasses soft label refinement and a cosine similarity-based loss function to efficiently leverage full label information. Extensive experiments indicate that GIFT consistently enhances state-of-the-art dataset distillation methods across various dataset scales without incurring additional computational costs. Importantly, GIFT significantly enhances cross-optimizer generalization, an area previously overlooked. For instance, on ImageNet-1K with IPC = 10, GIFT enhances the state-of-the-art method RDED by 30.8\% in cross-optimizer generalization.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10413
Loading