Differentially Private Multi-Armed Bandits in the Shuffle Model

Published: 01 Jan 2021, Last Modified: 14 May 2025NeurIPS 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We give an $(\varepsilon,\delta)$-differentially private algorithm for the Multi-Armed Bandit (MAB) problem in the shuffle model with a distribution-dependent regret of $O\left(\left(\sum_{a:\Delta_a>0}\frac{\log T}{\Delta_a}\right)+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, and a distribution-independent regret of $O\left(\sqrt{kT\log T}+\frac{k\sqrt{\log\frac{1}{\delta}}\log T}{\varepsilon}\right)$, where $T$ is the number of rounds, $\Delta_a$ is the suboptimality gap of the action $a$, and $k$ is the total number of actions. Our upper bound almost matches the regret of the best known algorithms for the centralized model, and significantly outperforms the best known algorithm in the local model.
Loading