Multi-channel Generative Adversarial Network for Parallel Magnetic Resonance Image Reconstruction in K-space
Abstract: Magnetic Resonance Imaging (MRI) typically collects data below the Nyquist sampling rate for imaging acceleration. To remove aliasing artifacts, we propose a multi-channel deep generative adversarial network (GAN) model for MRI reconstruction. Because multi-channel GAN matches the parallel data acquisition system architecture on a modern MRI scanner, this model can effectively learn intrinsic data correlation associated with MRI hardware from originally-collected multi-channel complex data. By estimating missing data directly with the trained network, images may be generated from undersampled multi-channel raw data, providing an “end-to-end” approach to parallel MRI reconstruction. By experimentally comparing with other methods, it is demonstrated that multi-channel GAN can perform image reconstruction with an affordable computation cost and an imaging acceleration factor higher than the current clinical standard.
0 Replies
Loading