Abstract: Multi-turn dialogue system has attracted increasing attention in both academic and industry community. Multi-turn dialogue generation task is a challenging work as the relations among words, utterances and external knowledge are extremely complex. However, the existing methods only focus on constructing the relations between current utterance and historical utterances, and they even oversimplify the relation mining process. Moreover, with the accumulation of dialogue information, the deep semantic information is difficult to understand so that it needs a mechanism with the ability of reasoning and digesting information repeatedly, which is ignored by previous methods. In order to solve the above problems, we propose a Memory Graph with Message Rehearsal (MGMR) for dialogue generation based on the cognitive process of human memory. MGMR contains three main modules: sensory memory, short-term memory and long-term memory. Sensory memory converts the current utterance into embeddings from both word-level and sentence-level. We design a message rehearsal module in short-term memory to extract valuable information of current utterance deeply and repeatedly combined with the relative historical dialogue information and external knowledge stored in long-term memory. Furthermore, we innovatively design a memory graph in long-term memory to construct the relations among words, utterances and knowledge. The memory graph achieves three goals: extracting accurate relations between current utterance and historical utterances, updating the historical dialogue information, and achieving knowledge precipitation by expanding memory graph with the key words and relevant external knowledge of current utterance. We evaluate our model on real-world datasets and achieve better performance compared with the existing state-of-the-art methods.
Loading