AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning

Published: 16 Jan 2024, Last Modified: 14 Apr 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Deep Learning, Diffusion Model, Video Generation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: In this paper, we present AnimateDiff, a practical framework for animating personalized text-to-image diffusion models without requiring model-specific tuning.
Abstract: With the advance of text-to-image (T2I) diffusion models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. However, adding motion dynamics to existing high-quality personalized T2Is and enabling them to generate animations remains an open challenge. In this paper, we present AnimateDiff, a practical framework for animating personalized T2I models without requiring model-specific tuning. At the core of our framework is a plug-and-play motion module that can be trained once and seamlessly integrated into any personalized T2Is originating from the same base T2I. Through our proposed training strategy, the motion module effectively learns transferable motion priors from real-world videos. Once trained, the motion module can be inserted into a personalized T2I model to form a personalized animation generator. We further propose MotionLoRA, a lightweight fine-tuning technique for AnimateDiff that enables a pre-trained motion module to adapt to new motion patterns, such as different shot types, at a low training and data collection cost. We evaluate AnimateDiff and MotionLoRA on several public representative personalized T2I models collected from the community. The results demonstrate that our approaches help these models generate temporally smooth animation clips while preserving the visual quality and motion diversity. Codes and pre-trained weights are available at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 536